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1. Introduction

An extensive literature, both theoretical1 and empirical,2 has arisen around the
special semi-logarithmic demand for money function introduced by (Cagan 1956).
Cagan’s motivation behind the demand for money function was mainly in terms of
transactions costs and its relationship to the consumer’s ability to affect the real
value of cash balances. Cagan argued that the real cost of holding cash balances
fluctuates widely enough to account for the dramatic changes in the holding of
cash balances observed during hyperinflation. He hypothesized that during peri-
ods of hyperinflation the demand for money is almost entirely explained by the
variation in the expected rate of change in prices and that changes in expected
inflation have the same effect on real balances in percentage terms regardless of
the absolute amount of initial cash balances. In other words, during hyperinfla-
tions, the demand for money takes the special form: m = ke−λπ

e
, where m is the

real demand for money, πe is the expected rate of inflation and k, λ are positive
constants.
The theoretical papers using Cagan’s functional form have been written largely

in the monetarist tradition, analyzing hyperinflation and the associated problem
of “inflation tax.”(See, for instance, Calvo and Lederman 1992, Sargent and Wal-
lace 1973, Friedman 1971.) The use of Cagan’s demand for money function has,
however, been “ad-hoc” and no attempt has been made to rationalize the function
in terms of “utility maximizing” behavior. This paper examines the possibility
of providing such a rationalization, without introducing money directly into the
consumer’s utility function. We assume that individuals are rational and that
money is both a medium of exchange and a store of value, and that the demand
for money is a result of intertemporal consumption smoothing. In this framework
we try to solve the so called “integrability problem” by asking the question as to
whether Cagan’s special semi-logarithmic form of the demand for money can be
generated from some underlying process of utility maximization.
We provide the answer to this question in the context of two different mod-

els. The first is a simple two-period utility maximizing model of the type used
extensively in “overlapping generations” literature in macroeconomics (Samuel-

1See for instance, Calvo and Leiderman 1992, Bruno and Fisher 1990, Goldman 1974, Sargent
and Wallace 1973, Friedman 1971.

2See for instance, Metin and Muslu 1999, Easterly, Mauro and Schmidt-Hebbel 1995, Michael,
Nobay and Peel 1994, Engsted 1993, Taylor 1991, Anderson, Bomberger and Makinen 1988,
Christiano 1987, Salemi and Sargent 1979, Aghevli and Khan 1977, Babcock and Makinen
1975, Pickersgill 1968, Cagan 1956.
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son 1958, Diamond 1965). The second is a transactions cost/inventory theoretic
model of the “Baumol-Tobin” type (Baumol 1952, Tobin 1956). For the first type
of model we discuss and analyze the type of utility function that gives rise to
Cagan’s demand for money function. We show that while the function has the
“usual” properties assumed in utility theory, no time separable utility function
of the type usually used in overlapping generations models can generate Cagan’s
form for the demand for money. For the second type of model, we show that in
a “Baumol-Tobin” type of inventory theoretic framework, the demand for money
takes Cagan’s form if and only if the transactions cost function in the model takes
a specific form. Our results are shown to be valid both in static and fully dynamic
versions of this model.

2. Demand for Money: Cagan’s Functional Form

Let m be the real quantity of money, M the nominal quantity of money and P
the price level. The usual demand for money function used in macroeconomics
posits a positive relation between the real demand for money, mt ≡ Mt

Pt
, and real

income, yt, and a negative relationship between the real demand for money and
the nominal interest rate, it. A special semi-logarithmic form of this relationship
may be written as, lnmt = k + γ ln yt − λit or equivalently as:

Mt

Pt
= ke−λityγt (2.1)

where k, γ and λ are positive constants.
Using Fisher’s equation, it = rt + πet , relating the nominal interest rate to

the real interest rate, rt, and the expected inflation rate, πet , one can think of
two types of regimes. Firstly, we can have macroeconomic regimes with stable
prices where the real interest rate is constant and is primarily determined by
the marginal product of capital. Since prices are stable, nominal interest rate is
constant too. In such a regime, Mt

Pt
= kyγt where k ≡ ke−λit > 0 is a positive

constant. If γ = 1, one gets the classical “quantity theory” of money. A second
type of scenario is that of an inflationary environment such as those studied by
Cagan (1956) in which hyperinflation prevailed and real income stagnated. In this
case, maintaining the assumption that the real rate of interest does not change
and is approximately zero, since real income does not change as well, the demand
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for money takes Cagan’s special form and is given by:

Mt

Pt
= k0e

−λπet (2.2)

where k0 = ky
γ
t .While this particular functional form for the demand for money

has been extremely useful in empirical analyses of money demand during infla-
tionary periods, the following open question remains: Can this form arise from the
utility maximizing behavior of a representative agent? We will address this ques-
tion in the context of two types of standard models used in macroeconomics, the
Samuelson-Diamond two-period overlapping generations model and the Baumol-
Tobin transactions cost/inventory theoretic model.

3. Model A: The Overlapping Generations Model

Consider a simple model with one good where a representative agent lives for
two periods. The agent’s utility function is given by u (c1, c2) where c1 and c2
represent the agent’s consumption in periods 1 and 2, respectively. Money does
not enter the utility function and thus has no intrinsic value. The agent receives
(real) income, y in the first period. No income is earned in the second period.
Consumption in the second period is paid from savings held in the form of money,
and the demand for money is thus “derived demand” motivated by consumption
smoothing. Let p1, p2 > 0 be the price of the good in the first and the second
periods, respectively, and M the nominal quantity of money. Then, the agent’s
utility maximization problem can be written as:

max
c1,c2

u (c1, c2) (3.1)

such that

M + p1c1 = p1y ≡ Y (3.2)

p2c2 = M (3.3)

c1, c2 ≥ 0
The model that is usually used in macroeconomics is in fact a special case of
the above model. In the “standard” overlapping generations model it is generally
assumed that the utility function u is additively time separable and that it can
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be written as sum of utility from consumption in period one and the discounted
value of the utility from consumption in period two. Letting the discount factor
be (1 + θ)−1 with θ > 0, the agent’s maximization problem can, in this case, be
rewritten as:

max
c1,c2

[u (c1) + (1 + θ)−1 u (c2)] (3.4)

such that

p2c2 + p1c1 = p1y ≡ Y
p2c2 = M

c1, c2 ≥ 0
Under the standard assumption that the agent’s expectation is “rational” (Lu-

cas 1972) and that the expected price in period 2 is the same as that predicted by
the agent, the inflation and expected inflation rates, π and πe are identical and
πe = π ≡ p2

p1
− 1. Using the unit income elastic version of Cagan’s demand for

money function (2.2), (i.e., assuming γ = 1), we have:

M = k0e
−λπeY , k0 > 0, (3.5)

Solving for c1and c2 from (3.2) and (3.3) we get,

c1 =
Y

p1
1− k0e−λπe (3.6)

c2 =
Y

p2
k0e

−λπe (3.7)

We will resolve two issues of rationalizability. First, we will demonstrate that
there exists a “well behaved” utility function that generate c1 and c2 as described
in equations (3.6) and (3.7) as interior solutions for the utility maximization prob-
lem described by (3.1), (3.2) and (3.3). Second, we will prove that the utility
function that rationalizes Cagan’s demand for money function has no (differen-
tiable) monotonic transformation that is additively separable. This will establish
that Cagan’s form cannot be generated as the solution to the utility maximization
problem of the “standard” model described by equations (3.4), (3.2) and (3.3).
To describe a utility function which can rationalize Cagan’s form we will in-

troduce two additional functions: g and its inverse h.
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Define a function g : ((max{0, 1 + λ−1 ln k0},∞)→ (0,∞) as:
g(ξ) = ξ k−10 e

λ(ξ−1) − 1 (3.8)

It is easy to check3 that both g and its derivative g are positive and hence h ≡ g−1,
the inverse of g, is a well defined continuous function from (0,∞) to (0,∞) .
Now, let consumption be given by (3.6) and (3.7). Then, we have

c1
c2
= g(

p2
p1
) =

p2
p1
[k−10 e

λ(
p2
p1
−1) − 1]

Normalizing the price of the first period consumption to be 1, we can write, y = Y
p1

and p = p2
p1
. Using the budget constraint, we get:

c2 = k0
y

p
e−λ(p−1)

Invoking the integrability condition, we have:

dμ

dp
= k0

μ

p
e−λ(p−1) (3.9)

where for the indirect utility function ν, μ is the expenditure function, μ =
μ(p; ν(q, Y )). Thus, μ gives us the minimum expenditure needed when the price
vector is p to obtain the maximum utility when the income is y and the price
vector is q. Therefore, from (3.9):

lnμ =
p

q

k0
t
e−λ(t−1)dt+ A

Note that μ = y if p = q and that the constant of integration A = ln y. Hence,

μ = ye
p

q

k0
t
e−λ(t−1)dt

where p = p2
p1
and y = Y

p1
. Now, fixing p = p2

p1
= β > 1 and normalizing income to

be 1, qi =
qi
Y
for i = 1, 2 gives us

μ =
1

q1
e

β
q2
q1

k0
t
e−λ(t−1)dt

Noting that qici = 1, we have
1
q1
= c1 +

q1
q2
c2.

3Note that g (ξ) = k−10 eλ(ξ−1) + ξλk−10 eλ(ξ−1) − 1. Since ξ,λ and k0 are all strictly positive
we see that k−10 eλ(ξ−1) − 1 > 0 implies that g > 0 and g (ξ) > 0.
Thus, ξ > 1 + λ−1 ln k0 is sufficient to ensure that g > 0 and g > 0. That ξ > 1 + λ−1 ln k0

is implied by the domain of g.
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Now, substituting h( c1
c2
) for q1

q2
we get:

u (c1, c2) = [c1 + c2h(
c1
c2
)]e

β

h( c1c2 )
k0( 1s)e−λ(s−1)ds

(3.10)

= c2
c1
c2
+ h(

c1
c2
) e

β

h( c1c2 )
k0( 1s)e−λ(s−1)ds

= c2
c1
c2
+ h(

c1
c2
) e

σ(
c1
c2
) (3.11)

where σ(
c1
c2
) ≡

β

h
c1
c2

k0
1

s
e−λ(s−1)ds for some constant β > max{0, 1+λ−1 ln k0}.

Proposition 1. The utility function u in (3.10) is homogeneous of degree 1 in
(c1, c2) and is strictly quasi-concave with marginal utilities being positive for both
c1and c2. If for this utility function an interior solution to the utility maximization
problem (3.1) exists, then the demand for c1 and c2 are given by (3.6) and (3.7)
and hence the demand for money is given by Cagan’s demand for money function
(3.5).

Proof. Let

φ(
c1
c2
) ≡ c1

c2
+ h(

c1
c2
) e

β

h( c1c2 )
k0( 1s)e−λ(s−1)ds

and note that our utility function (3.10) can be written as:

u (c1, c2) = c2φ(
c1
c2
). (3.12)

From (3.12) it is obvious that u is homogeneous of degree 1 in (c1, c2). Denoting
c1
c2
by x and using (3.10), the marginal utilities of c1and c2 are given by:

u1 = φ (x) and u2 = φ(x)− xφ (x) (3.13)
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By our definitions of g and h, ξ = h(x) if and only if x = g(ξ) = ξ k−10 eλ(ξ−1) − 1 .
Hence, x = h(x) k−10 eλ(h(x)−1) − 1 . This gives us:

x+ h(x) = k−10 h(x)e
λ(h(x)−1) (3.14)

Using (3.14), observe4 that φ(x)− φ (x)x = φ (x)h(x). Hence, (3.13) gives us:

u2 = u1h(
c1
c2
) (3.15)

Assume to the contrary that u1 ≤ 0. Now, by (3.13), if u1 ≤ 0, u2 > 0. Since,
h > 0, this contradicts (3.15). Thus, u1 > 0 and (using (3.15)) u2 > 0.
Furthermore, by (3.15) along any indifference curve, dc1

dc2
= −h( c1

c2
). Hence, we

get
d2c1
dc22

= −h (c1
c2
)

⎡⎣c2 dc1dc2 − c1
c22

⎤⎦ = −h (c1
c2
)
−h( c1

c2
)c2 − c1
c22

> 0

This establishes that the utility function is strictly quasi-concave.
Finally, using (3.15) and writing down the first order condition for an interior

solution, we have: h( c1
c2
) = p2

p1
. In other words, c1

c2
= g(p2

p1
) ≡ p2

p1
k−10 e

λ
p2
p1
−1 − 1 p2

p1
.

It is easy to verify, that (3.6) and (3.7) satisfy this condition. Hence, using strict
quasi-concavity, the unique interior solution to the utility maximizing problem
will yield a demand for money function having Cagan’s form.
To understand when an interior solution to our utility maximizing problem

will exist note that as c1
c2
−→ 0, u2

u1
−→ max 0, 1 + λ−1 ln k0 and as c1

c2
−→ ∞,

u2
u1
−→ ∞. This implies that two types of indifference curves are possible. Case

(a): 1 + λ−1 ln k0 ≤ 0: in this case, u2u1 −→ 0 as c1
c2
−→ 0, and the indifference

curves do not intersect either axis. Case (b): 1 + λ−1 ln k0 > 0: in this case,

4

φ (x) = [1 + h (x)]
φ(x)

x+ h(x)
− φ(x)

k0e
−λ(h(x)−1)h (x)

h(x)

= φ(x)
1 + h (x)

x+ h(x)
− h (x)

x+ h(x)
by (3.14)

=
φ(x)

x+ h(x)
.
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u2
u1
−→ 1 + λ−1 ln k0 as c1

c2
−→ 0, thus, while indifference curves do not cut the

c1 axis, they do intersect the c2 axis. In particular, this implies that an interior
solution exists in this case if and only if p2

p1
> 1 + λ−1 ln k0. The two cases are

illustrated in the figure below:

C

2
C

1
C

C2

a. b. 1

Figure 3.1:

In Case (a) an interior solution will exist for all positive values of p1 and
p2. Case (b) on the other hand implies that an interior solution exists (and
hence, Cagan’s form of the money demand function is appropriate) if and only
if p2

p1
− 1 > λ−1 ln k0 (i.e., if and only if the rate of inflation is high enough).

Which of these cases prevails depends on empirical values of the parameters λ
and k0. It is interesting to note that estimates in empirical studies suggest that
1 + λ−1 ln k0 > 0 and that Case (b) is the more plausible of the two cases. (See
for instance, Metin and Muslu 1999, Easterly, Mauro and Schmidt-Hebbel 1995,
Michael, Nobay and Peel 1994, Engsted 1993, Taylor 1991, Anderson, Bomberger
and Makinen 1988, Christiano 1987, Salemi and Sargent 1979, Aghevli and Khan
1977, Babcock and Makinen 1975, Pickersgill 1968, Cagan 1956.)
We have provided an example of an utility function, u, that rationalizes Ca-

gan’s form of the demand for money function. Clearly, a necessary and sufficient
condition for any utility function to generate this demand function is that it be a
strictly monotonic transformation of u. Now, using this property, we turn to the
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question of rationalizing Cagan’s demand function in the “standard” version of
the overlapping generations model with a time separable utility function.

Proposition 2. There does not exist a function u : R+ → R and a differentiable
strictly monotonic transformation v of u defined by (3.10) such that (i) v (c1, c2) =
u (c1) + (1 + θ)−1 u (c2) and (ii) v gives rise to Cagan’s form of the demand for
money function.

Proof. Assume to the contrary that v is such a monotonic transformation.
Then, ln v1

v2
= ln u1

(1+θ)−1u2
= lnu1(c1) − ln (1 + θ)−1 u2(c2). This implies that

∂
∂c1
[ ∂
∂c2
ln v1

v2
] ≡ 0.5 Since v is a monotone transformation, we would have ∂

∂c1
[ ∂
∂c2
ln u1

u2
] ≡

0.
But, from (3.15), ln u1

u2
= 1

h
= − lnh. Hence, we have:

∂

∂c2
ln
u1
u2
=
h

h

c1
c22

Thus, for ∂
∂c1
[ ∂
∂c2
ln u1

u2
] ≡ 0, it must be the case that h

h
c1 is a function of c2

alone, say, h
h
c1 ≡ ψ(c2)c

2
2. The left hand side of this equation is homogeneous of

degree 1 in (c1, c2). This implies that the right hand side is homogenous of degree
1 in c2. That is ψ(c2)c22 ≡ ac2 for some positive constant a.6 Thus, we can write:

h (x)

h(x)
=
a

x

Integrating both sides, we have h(x) ≡ bxa, where b is a constant of integration.
Thus, g ≡ h−1(x) = (1

b
)aξ

1
a . But, comparing this with ξ k−10 eλ(ξ−1) − 1 from

(3.8), and letting ξ →∞ we see that (1
b
)aξ

1
a ≡ ξ k−10 eλ(ξ−1) − 1 is impossible.

4. Model B: The Transactions Cost Model

In this model a representative agent faces two costs: a “transactions cost” and
an “opportunity cost of holding money” (see Tobin 1956). If money is held for
transactions purposes, then it cannot be invested and the interest, i, that could
have been earned is foregone. Thus, the opportunity cost of holding the stock of

5See Sono’s (1961) classic analysis of separability.
6Note that a is not equal to zero since this will imply that h is a constant.
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money m is im. The transactions cost is some function of the amount of money
being held and the level of transactions. The cost of transactions decreases with
the amount of money held, but decreases at a decreasing rate. The real income
y is a proxy for the volume of transactions and the transactions cost increases
with y. Thus, we will assume, α = α (m, y) is the transactions cost and in the
neighborhood of the equilibrium holding of money αm < 0, αmm > 0 and αy > 0,
where the real quantity of money is m ≡ M

P
.

To hold an optimal inventory of money the agent minimizes the sum of the
“transactions cost” and the “opportunity cost of holding money”.

min
m
[im+ α (m, y)]

The first-order condition for an interior minimum is given by:

−αm (m, y) = i (4.1)

Since αmm > 0, in the neighborhood of the equilibrium, the first-order conditions
is sufficient for a minimum, and using the implicit function theorem, we can solve
(locally) for the optimal level of money demand

∧
m as a function of i and y. Thus,

we have:

∧
m=

∧
m (i, y) with

∧
mi< 0; moreover, αmy < 0 iff

∧
my> 0.

Thus, in equilibrium, the amount of money held will be a decreasing function of
real interest rate, and if αmy < 0, it will be an increasing function of total income
of the agent.
Now consider the following special transactions cost function (where γ is a

positive constant).

α (m, y) ≡ λ−1 [m lnm−m− γm ln y −m ln k] + kλ−1yγ + τ(y) (4.2)

where τ is an arbitrary real valued function of y such that τ (y) ≥ 0.
Replacing α (m, y) with this specific form in (4.1), the optimum amount of money
holding can be calculated. This gives us a generalized version of Cagan’s demand
for money function as follows:7

7It is worth noting, that if one used α(m, y) = α0y
2m with α0 > 0 then (4.1) would give us

Baumol’s well known “square root” formula with
∧
m= (α0y2i )

1
2 .
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−αm ≡ −λ−1 [lnm− γ ln y − ln k] = i. (4.3)

Or,
∧
m = ke−λiyγ.

It is easy to check that at the equilibrium described by (4.3), αm < 0, αmm > 0
and αy > 0.
Conversely, assume that we have (4.3). Then, in the neighborhood of the

equilibrium, we can define a function ρ(y) such that:

α (m, y) ≡ λ−1 [m lnm−m− γm ln y −m ln k] + ρ(y)

Since at the equilibrium, αy > 0, we have ρ (y) > γm(λy)−1. Using (4.3), we get
ρ (y) > γkλ−1e−λ·iyγ−1. Since the last inequality holds for all i > 0, we must have
ρ (y) ≥ γkλ−1yγ−1. Thus, defining ρ(y) ≡ kλ−1yγ + τ(y), we see that τ (y) ≥ 0.
This gives us the specific transactions cost function (4.2) above. Thus, we have
the generalized form

∧
m= ke−λ·iyγ of Cagan’s money demand function if and only

if the transactions cost has the form (4.2) in the neighborhood of the equilibrium
m.
Note, however, that from (4.2) we get:

αy = −γm(λy)−1 + kλ−1yγ + τ (y)

and
αm = λ−1 [lnm− γ ln y − ln k]

and that αy > 0 and αm < 0 only if m is “small enough”. Thus, for our specific
transactions cost function, money holdings in equilibrium need to be small enough
in this sense. This is particularly interesting because during periods when the
inflation rate is high, households typically minimize their holdings of real balances
by moving into non-money assets.
To see that a similar conclusion can be derived from a fully dynamic infinite

horizon representative agent model, consider a model where the agent is maxi-
mizing his or her lifetime utility given a budget constraint. The quantity of labor
is fixed as is the wage rate, and only consumption enters into the instantaneous
utility function, ut (.) . A higher consumption level in any period is associated with
higher utility. Here, once again, money does not (directly) enter the utility func-
tion. However, money does affect the consumption level indirectly. Total wealth
of an agent at any particular time period is given by the wage earned along with
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accumulated savings from previous time periods. Savings in any period can be
held either as money (which earns no interest) or in the form of a financial asset
f earning a real interest, r. Increasing or decreasing money holdings is costly
entailing the cost of switching between financial assets and money. We assume

that this cost has a quadratic structure and is given by η
2

•
m

2
, for some η > 0. As

in our static model, α (m (t) , y) represents the transactions cost at time t. If θ is
the subjective discount rate, then the agent’s intertemporal utility maximization
problem can then be written as:

max

∞

0

ut (c(t)) e
−θtdt

subject to

rft + wl = ḟ + c (t) + α (m (t) , y) +
η

2
[ṁ]2 +

Ṁ

P

The left hand of the budget constraint represents the agents income: interest
earned (rft) and wage income (wl). This income can be used either for current
consumption (c (t)), paying for transactions costs (α (m (t) , y)), for accumulat-
ing (decumulating) interest earning assets (ḟ) or for increasing (decreasing) real
balances (Ṁ

P
) and paying the costs associated with changing real balances.

Since d
dt

M
P

= ṁ = Ṁ
P
− M

P
Ṗ
P
, we can write Ṁ

P
= ṁ +mπ. Thus, under

perfect foresight, with π = πe, the budget constraint becomes:

rft + wl = ḟ + c (t) + α (m (t) , y) +
η

2
[ṁ]2 +m(t)πe + ṁ

Substituting for ct in the utility function and using this budget constraint, we
get:

max

∞

0

ut rft + wl − ḟ − α (m (t) , y)− η

2
[ṁ]2 −m(t)πe − ṁ e−θtdt

The Euler equations for this problem are given by

∂ut
∂m

=
d

dt

∂ut
∂ṁ

(4.4)

∂ut
∂f

=
d

dt

∂ut

∂ḟ
(4.5)
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Substituting (4.5) into (4.4) we get:

ηm̈− rηṁ− (αm + r + πe) = 0. (4.6)

The characteristic equation of the system is given by:

x2 − rx− η−1αmm = 0

Under our assumption αmm > 0, one of the eigenvalues of the system will be
positive and the other negative indicating the existence of a saddle point trajectory
converging to the equilibrium given by:

(αm + r + πe) = 0,

which is the same as (4.1).

Proposition 3. The demand for money in equilibrium has a generalized version
of Cagan’s functional form if and only if in the neighborhood of the equilibrium
the transactions cost function α (m, y)is given by:

α (m, y) ≡ λ−1 [m lnm−m− γm ln y −m ln k] + kλ−1yγ + τ(y) where τ (y) ≥ 0.

5. Conclusion

We have examined the possibility of rationalizing Cagan’s functional form for the
demand for money. We have shown that in a two period overlapping generations
model this demand for money can be derived from an utility function satisfying
the usual properties of differentiability, strict quasi-concavity and positivity of
marginal utilities. Empirical estimates of the parameters of the model suggest
that the functional form arises if and only if the inflation rate is high enough.
However, under the usual assumptions that the utility function is time separable,
Cagan’s form would not arise in this type of model. An alternative way for
rationalizing Cagan’s money demand function is by using a dynamic inventory
cost theoretic model of the Baumol-Tobin type. We have identified the specific
transactions cost structure which would give rise to a generalized form of Cagan’s
demand for money function as a saddle point trajectory of such a model. Once
again we find that the model would be valid only in periods of significant inflation
when households prefer other assets and reduce their holdings of money balances.
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